
Originally published in Software Development Magazine
Copies are available in English, Spanish, Italian and Portuguese

www.SoftwareMetrics.Com

Fundamentals of Function Point Analysis
By David Longstreet

David@SoftwareMetrics.Com
www.SoftwareMetrics.Com

Abstract

Systems continue to grow in size and complexity. They are becoming more and more
difficult to understand. Improvement of coding tools allows software developers to
produce large amounts of software to meet an ever-expanding need from users. As
systems grow a method to understand and communicate size needs to be used. Function
Point Analysis is a structured technique of problem solving. It is a method to break
systems into smaller components, so they can be better understood and analyzed.

Function points are a unit measure for software much like an hour is to measuring time,
miles are to measuring distance or Celsius is to measuring temperature. Function Points
are an ordinal measure much like other measures such as kilometers, Fahrenheit, hours,
so on and so forth.

Introduction

Human beings solve problems by breaking them into smaller understandable pieces.
Problems that may appear to be difficult are simple once they are broken into smaller
parts -- dissected into classes. Classifying things, placing them in this or that category, is
a familiar process. Everyone does it at one time or another -- shopkeepers when they take
stock of what is on their shelves, librarians when they catalog books, secretaries when
they file letters or documents. When objects to be classified are the contents of systems, a
set of definitions and rules must be used to place these objects into the appropriate
category, a scheme of classification. Function Point Analysis is a structured technique of
classifying components of a system. It is a method to break systems into smaller
components, so they can be better understood and analyzed. It provides a structured
technique for problem solving.

In the world of Function Point Analysis, systems are divided into five large classes and
general system characteristics. The first three classes or components are External Inputs,
External Outputs and External Inquires each of these components transact against files
therefore they are called transactions. The next two Internal Logical Files and External
Interface Files are where data is stored that is combined to form logical information. The
general system characteristics assess the general functionality of the system.

David Longstreet
www.SoftwareMetrics.Com

2 of 2

Brief History

Function Point Analysis was developed first by Allan J. Albrecht in the mid 1970s. It was
an attempt to overcome difficulties associated with lines of code as a measure of software
size, and to assist in developing a mechanism to predict effort associated with software
development. The method was first published in 1979, then later in 1983 . In 1984
Albrecht refined the method and since 1986, when the International Function Point User
Group (IFPUG) was set up, several versions of the Function Point Counting Practices
Manual have been published by IFPUG. The current version of the IFPUG Manual is
4.1. A full function point training manual can be downloaded from this website.

Objectives of Function Point Analysis

Frequently the term end user or user is used without specifying what is meant. In this
case, the user is a sophisticated user. Someone that would understand the system from a
functional perspective --- more than likely someone that would provide requirements or
does acceptance testing.

Since Function Points measures systems from a functional perspective they are
independent of technology. Regardless of language, development method, or hardware
platform used, the number of function points for a system will remain constant. The only
variable is the amount of effort needed to deliver a given set of function points; therefore,
Function Point Analysis can be used to determine whether a tool, an environment, a
language is more productive compared with others within an organization or among
organizations. This is a critical point and one of the greatest values of Function Point
Analysis.

Function Point Analysis can provide a mechanism to track and monitor scope creep.
Function Point Counts at the end of requirements, analysis, design, code, testing and
implementation can be compared. The function point count at the end of requirements
and/or designs can be compared to function points actually delivered. If the project has
grown, there has been scope creep. The amount of growth is an indication of how well
requirements were gathered by and/or communicated to the project team. If the amount of
growth of projects declines over time it is a natural assumption that communication with
the user has improved.

Characteristic of Quality Function Point Analysis

Function Point Analysis should be performed by trained and experienced personnel. If
Function Point Analysis is conducted by untrained personnel, it is reasonable to assume
the analysis will done incorrectly. The personnel counting function points should utilize
the most current version of the Function Point Counting Practices Manual (at the moment
version 4.1).

David Longstreet
www.SoftwareMetrics.Com

3 of 3

Current application documentation should be utilized to complete a function point count.
For example, screen formats, report layouts, listing of interfaces with other systems and
between systems, logical and/or preliminary physical data models will all assist in
Function Points Analysis..

The task of counting function points should be included as part of the overall project
plan. That is, counting function points should be scheduled and planned. The first
function point count should be developed to provide sizing used for estimating.

The Five Major Components

Since it is common for computer systems to interact with other computer systems, a
boundary must be drawn around each system to be measured prior to classifying
components. This boundary must be drawn according to the user’s point of view. In
short, the boundary indicates the border between the project or application being
measured and the external applications or user domain. Once the border has been
established, components can be classified, ranked and tallied.

External Inputs (EI) - is an elementary process in which data crosses the boundary from
outside to inside. This data may come from a data input screen or another application.
The data may be used to maintain one or more internal logical files. The data can be
either control information or business information. If the data is control information it
does not have to update an internal logical file. The graphic represents a simple EI that
updates 2 ILF's (FTR's).

External Outputs (EO) - an elementary process in which derived data passes across the
boundary from inside to outside. Additionally, an EO may update an ILF. The data
creates reports or output files sent to other applications. These reports and files are
created from one or more internal logical files and external interface file. The following
graphic represents on EO with 2 FTR's there is derived information (green) that has been
derived from the ILF's

David Longstreet
www.SoftwareMetrics.Com

4 of 4

External Inquiry (EQ) - an elementary process with both input and output components
that result in data retrieval from one or more internal logical files and external interface
files. The input process does not update any Internal Logical Files, and the output side
does not contain derived data. The graphic below represents an EQ with two ILF's and no
derived data.

Internal Logical Files (ILF’s) - a user identifiable group of logically related data that
resides entirely within the applications boundary and is maintained through external
inputs.

External Interface Files (EIF’s) - a user identifiable group of logically related data that
is used for reference purposes only. The data resides entirely outside the application and
is maintained by another application. The external interface file is an internal logical file
for another application.

All components are rated as High, Low or Average

After the components have been classified as one of the five major components (EI’s,
EO’s, EQ’s, ILF’s or EIF’s), a ranking of low, average or high is assigned. For
transactions (EI’s, EO’s, EQ’s) the ranking is based upon the number of files updated or

David Longstreet
www.SoftwareMetrics.Com

5 of 5

referenced (FTR’s) and the number of data element types (DET’s). For both ILF’s and
EIF’s files the ranking is based upon record element types (RET’s) and data element
types (DET’s). A record element type is a user recognizable subgroup of data elements
within an ILF or EIF. A data element type is a unique user recognizable, nonrecursive,
field.

Each of the following tables assists in the ranking process (the numerical rating is in
parentheses). For example, an EI that references or updates 2 File Types Referenced
(FTR’s) and has 7 data elements would be assigned a ranking of average and associated
rating of 4. Where FTR’s are the combined number of Internal Logical Files (ILF’s)
referenced or updated and External Interface Files referenced.

EI Table

Shared EO and EQ Table

Values for transactions

Like all components, EQ’s are rated and scored. Basically, an EQ is rated (Low, Average
or High) like an EO, but assigned a value like and EI. The rating is based upon the total
number of unique (combined unique input and out sides) data elements (DET’s) and the
file types referenced (FTR’s) (combined unique input and output sides). If the same FTR

David Longstreet
www.SoftwareMetrics.Com

6 of 6

is used on both the input and output side, then it is counted only one time. If the same
DET is used on both the input and output side, then it is only counted one time.

For both ILF’s and EIF’s the number of record element types and the number of data
elements types are used to determine a ranking of low, average or high. A Record
Element Type is a user recognizable subgroup of data elements within an ILF or EIF. A
Data Element Type (DET) is a unique user recognizable, no recursive field on an ILF or
EIF.

The counts for each level of complexity for each type of component can be entered into a
table such as the following one. Each count is multiplied by the numerical rating shown
to determine the rated value. The rated values on each row are summed across the table,
giving a total value for each type of component. These totals are then summed across the
table, giving a total value for each type of component. These totals are then summoned
down to arrive at the Total Number of Unadjusted Function Points.

David Longstreet
www.SoftwareMetrics.Com

7 of 7

Value Adjustment Factor (General System
Characteristics)

The value adjustment factor (VAF) is based on 14 general system characteristics (GSC's)
that rate the general functionality of the application being counted. Each characteristic
has associated descriptions that help determine the degrees of influence of the
characteristics. The degrees of influence range on a scale of zero to five. The ratings are:

0 Not present, or no influence
1 Incidental influence
2 Moderate influence
3 Average influence
4 Significant influence
5 Strong influence throughout

GSC’s at a Glance:

General System Characteristic Brief Description
1. Data communications How many communication facilities are there to

aid in the transfer or exchange of information
with the application or system?

2. Distributed data processing How are distributed data and processing functions
handled?

3. Performance Did the user require response time or throughput?
4. Heavily used configuration How heavily used is the current hardware

platform where the application will be executed?
5. Transaction rate How frequently are transactions executed daily,

weekly, monthly, etc.?
6. On-Line data entry What percentage of the information is entered

On-Line?
7. End-user efficiency Was the application designed for end-user

efficiency?
8. On-Line update How many ILF’s are updated by On-Line

transaction?
9. Complex processing Does the application have extensive logical or

mathematical processing?
10. Reusability Was the application developed to meet one or

many user’s needs?
11. Installation ease How difficult is conversion and installation?

David Longstreet
www.SoftwareMetrics.Com

8 of 8

12. Operational ease How effective and/or automated are start-up, back
up, and recovery procedures?

13. Multiple sites Was the application specifically designed,
developed, and supported to be installed at
multiple sites for multiple organizations?

14. Facilitate change Was the application specifically designed,
developed, and supported to facilitate change?

Considerations for GUI Applications
GSC items such as Transaction Rates, End User Efficiency, On Line Update, and
Reusability usually score higher for GUI applications than on traditional applications.
On the other hand, Performance, Heavily used configuration, multiple sites, will score
lower for GUI applications than traditional applications.

Once all the 14 GSC’s have been answered, they should be tabulated using the IFPUG
Value Adjustment Equation (VAF) --

 14 where: Ci = degree of influence for each General System Characteristic
VAF = 0.65 + [(∑ Ci) / 100] .i = is from 1 to 14 representing each GSC.
 i =1 ∑ = is summation of all 14 GSC’s.

Another way to understand the formula is VAF = (65 + TDI)/100, where TDI is the sum
of the results from each question.

Summary of benefits of Function Point Analysis

• Can be used to size software applications accurately. Sizing is an important
component in determining productivity (outputs/inputs).

• Can be an essential ingredient to measuring and managing scope creep.

• Can be the basis of creating estimating models, which can be explained, revised

and accurate.

• Can be used with other metrics can help pinpoint opportunities for improvement.

• Can help improve communications with senior management.

• Can be counted by different people, at different times, to obtain the same measure

within a reasonable margin of error.

• Are easily understood by the non-technical user. This helps communicate sizing
information to a user or customer.

David Longstreet
www.SoftwareMetrics.Com

9 of 9

• Can be used to determine whether a tool, a language, an environment, is more
productive when compared with others.

Conclusions

Accurately predicting the size of software has plagued the software industry for over 45
years. Function Points are becoming widely accepted as the standard metric for
measuring software size. Now that Function Points have made adequate sizing possible, it
can now be anticipated that the overall rate of progress in software productivity and
software quality will improve. Understanding software size is the key to understanding
both productivity and quality. Without a reliable sizing metric relative changes in
productivity (Function Points per Work Month) or relative changes in quality (Defects
per Function Point) cannot be calculated. If relative changes in productivity and quality
can be calculated and plotted over time, then focus can be put upon an organizations
strengths and weaknesses. Most important, any attempt to correct weaknesses can be
measured for effectiveness.

Copy and reproduction is permitted and encouraged.

Copyright Longstreet Consulting Inc. 2005
www.SoftwareMetrics.Com
David@SoftwareMetrics.Com

Longstreet Consulting Inc.
2207 S. West Walnut
Blue Springs, MO 64015
(816) 739-4058

